Long-term survival of endodontically treated, maxillary anterior teeth restored with either tapered or parallel-sided glass-fiber posts and full-ceramic crown coverage

Antonio Signorea,1,*, Stefano Benedicentia, Vassilios Kaitsasb,2, Michele Baronec, Francesca Angierod, Giambattista Raverae

aDepartment of Biophysics, Medicine and Dentistry, University of Genoa, Largo Rosanna Benzi 10, 16132 Genoa, Italy
bDepartment of Anatomy, University of Siena, Italy
cDepartment of Endodontics, PTV-University of Rome "Tor Vergata", Viale Oxford 81, 00133 Rome, Italy
dUniversity Milan "Bicocca", Department of Pathological Anatomy, San Gerardo Hospital, Via Pergolese 33, 20052 Monza (MI), Italy
eDepartment of Health Sciences, University of Genoa, Largo Rosanna Benzi 10, 16132 Genoa, Italy

Article info:
Article history:
Received 29 June 2008
Received in revised form
9 October 2008
Accepted 11 October 2008

Keywords:
Fiber post
Endodontically treated teeth
Full-ceramic crown
Build-up material
Survival analysis
Adhesion

Abstract
Objectives: This retrospective study investigated the clinical effectiveness over up to 8 years of parallel-sided and of tapered glass-fiber posts, in combination with either hybrid composite or dual-cure composite resin core material, in endodontically treated, maxillary anterior teeth covered with full-ceramic crowns.

Methods: The study population comprised 192 patients and 526 endodontically treated teeth, with various degrees of hard-tissue loss, restored by the post-and-core technique. Four groups were defined based on post shape and core build-up materials, and within each group post-and-core restorations were assigned randomly with respect to root morphology. Inclusion criteria were symptom-free endodontic therapy, root-canal treatment with a minimum apical seal of 4 mm, application of rubber dam, need for post-and-core complex because of coronal tooth loss, and tooth with at least one residual coronal wall. Survival rate of the post-and-core restorations was determined using Kaplan-Meier statistical analysis.

Results: The restorations were examined clinically and radiologically; mean observation period was 5.3 years. The overall survival rate of glass-fiber post-and-core restorations was 98.5%. The survival rate for parallel-sided posts was 98.6% and for tapered posts was 96.8%. Survival rates for core build-up materials were 100% for dual-cure composite and 96.8% for hybrid light-cure composite.

Conclusions: For both glass-fiber post designs and for both core build-up materials, clinical performance was satisfactory. Survival was higher for teeth retaining four and three coronal walls.
1. Introduction

The choice of appropriate definitive restoration of endodontically treated maxillary anterior teeth should be guided by the amount of remaining hard tissues as well as functional and aesthetic considerations. Because of their aesthetic appeal, durability and biocompatibility, full-ceramic crowns have become a standard procedure in the treatment of anterior teeth.1,2 However, in cases of inadequate remaining coronal structure, complete crowns often require the additional support afforded by a post-retained core.3,4 For this purpose, a prefabricated root post or an indirect, custom-made post-and-core can be used. Custom-fabricated cast post-and-cores are still considered to be the gold standard for restoring extensively damaged endodontically treated teeth.5,6 However, it has been reported that shape and rigidity of cast gold post-and-cores, and the rigidity of prefabricated metal posts, may pose a risk for root fracture.7,8 Recent reports suggest that the rigidity of the post should be equal or almost equal to that of dentin, so as to distribute the functional forces evenly along the length of the root.9,10 More recently, several new types of post material have been introduced, including fiber-reinforced posts (FRPs). The biomechanical properties of fiber posts have been reported to be close to those of dentin,11,12 and clinical prospective and retrospective studies have reported convincing results.13,14 In addition, for aesthetic considerations, dentin-colored post-and-core materials are now normally used for all-ceramic crown restorations.15,16 The core should be built up with composite materials, but as yet there is no agreement regarding the best composite material to be used for the direct core build-up of endodontically treated teeth.17,18

Most existing longitudinal clinical studies of endodontically treated anterior teeth restored with glass-fiber posts, in combination with full-ceramic crowns, are on small series and with a follow-up of limited duration. The purpose of this longitudinal retrospective study, over up to 8 years, was thus to evaluate the survival rate of glass-fiber posts with parallel-sided or tapered shape in combination with either hybrid composite or dual-cure composite resin core material in endodontically treated maxillary anterior teeth, with various degrees of coronal tissue loss, restored with full-ceramic crowns.

2. Materials and methods

2.1. Study population

Between January 2000 and February 2008, patients attending the Department of Biophysics, Medicine and Dentistry of the University of Genoa (Italy) requiring aesthetic restoration of endodontically treated, maxillary anterior teeth were recruited for this study. The study protocol was conducted by four operators, after prior review and approval by the Ethical Approval Board of the University of Genoa. All patients provided written, informed consent and declared themselves willing to return at regular intervals for evaluation. The study population comprised 200 patients, 121 female (60.5%) and 79 (39.5%) male, who had received 538 FRPs in endodontically treated maxillary anterior teeth, with various degrees of hard-tissue loss. They were subdivided into four experimental groups, as described below. Four experimental groups were defined by post shape and composite core build-up material. Post-and-core build-up with parallel-sided post and dual-cure composite (group A), parallel-sided post and hybrid light-cure composite (group B), tapered post and dual-cure composite (group C), and tapered post and hybrid light-cure composite (group D).

Each tooth received one calibrated post only. Randomization of the FRPs was carried out with respect to root morphology but not with respect to tooth location. For clinical and anatomical reasons, tapered FRPs were selected for tapered roots with small residual root dentin walls. The abutment portion of teeth that presented with three or four residual walls was built up with a dual-cure composite material (group A or C); teeth that presented with one or two residual walls were built up with a hybrid composite material (group B or D). For all teeth, the final restoration was a single laboratory fabricated full-ceramic single crown.

Only teeth that had been previously endodontically treated by one of the four operators were included in this study. Other inclusion criteria were symptom-free endodontic therapy, root-canal treatment with a minimum apical seal of 4 mm, application of rubber dam, and the need for a post-and-core restoration because of coronal tooth loss. Only patients showing an orthodontic Class I occlusal scheme were included. Exclusion criteria were teeth that had lost all coronal walls or with failed endodontic therapy, tooth fractures and extensive caries under the margins of the free gingiva. Also teeth with deep periodontal pockets, no adequate periodontal support and poor oral hygiene or caries rates were not included in this trial. Patients with open or deep bite, with severe parafunction and shortened dental arches and patients wearing removable partial dentures were also excluded. All patients received initially a medical examination by one of the four operators to exclude medical contraindications to dental treatment. One patient suffered from Sjögren syndrome and two patient suffered from diabetes at time of examination, however, all were receiving treatment. Fifty patients (25%) declared themselves to be smokers. In addition to medical and demographic information, other data were collected at the baseline examination: tooth location, root morphology, number of residual walls, type of the post placed (either parallel-sided or tapered), and core build-up material.

2.2. Clinical procedures

All endodontic and restorative procedures were performed by one of the four dentists involved in the study, under standardized conditions and employing standardized techniques, using the same materials and adhesive procedures. Root-canal treatment was performed using a crown-down technique with nickel-titanium instruments (ProFile System; Dentsply Maillefer, Ballaigues, Switzerland) and 2.5% sodium hypochlorite irrigation. The canals were filled with vertically condensed warm gutta-percha (Guttapercha Points, Dentsply DeTrey, Konstanz, Germany) and endodontic sealer containing eugenol (Argoseal, Ogna, Laboratori Farmaceutici, Muggiò (MI), Italy). All teeth received a temporary filling with zinc phosphate temporary filling material (DeTrey Zinc, Dentsply DeTrey, Konstanz, Germany). At least 10 days later, roots were...
prepared for post placement. Two prefabricated FRP designs were used: a parallel-sided glass-fiber post, the FibreKor Post (Pentron Clinical Technologies, Wallingford, USA); or tapered glass-fiber posts. Between 2000 and 2005 Lucsent Anchors were used (Dentatus AB, Hägersten, Sweden); starting from 2005, Enaposts (Micerium, Avegno (GE), Italy) were used.

For adhesive procedures, the working field was isolated with a rubber dam.

The appropriate size of FRPs was selected and the root canal space was prepared with calibrated drills provided by the manufacturer, to a length of 8–9 mm; at least 5–4 mm of apical seal was maintained. The posts were tried in and if necessary shortened with a diamond separating disc. Before cementing, the FRPs received surface pre-treatment: posts were cleaned with acetone and silanized with a prehydrolyzed silane solution (Monobond S, Ivoclar Vivadent, Schaan, Lichtenstein). The post surface was then wetted with one-coat bonding resin (Mono, DMG Dental-Material GmbH, Germany). After that the resin was thinned with oil-free air, then light-cured by means of a halogen light-curing unit with light-intensity 800 mW/cm² (Spectrum 800, Dentsply, Konstanz, Germany) for 20 s. The root canal was rinsed and dried with sterile paper points (Absorbent Paper Points, Dentsply DeTrey, Konstanz, Germany). Etching gel 37% phosphoric acid (Total Etch, IvoclarVivadent, Schaan, Lichtenstein) was applied to the post space for 60 s and rinsed off with water using an endodontic syringe then dried with sterile paper points. A single coat of dual-cure adhesive system (All Bond 2; Bisco, Schaumburg, IL, USA) was applied following the manufacturer's instruction using Microbrush fine or Microbrush X (Microbrush International, Grafton, USA) and not light-cured. Excess bonding components were completely absorbed with sterile paper points. A dual-cure composite resin cement (LuxaCore-Dual, DMG Dental-Material GmbH, Germany) was applied to the post space with a Lentulo spiral (Dentsply Maillefer, Ballaigues, Switzerland) and on the post surface, and then the post was seated. After removing excess cement, the correct position of the post was verified and the resin was light-cured by means of a halogen light-curing unit with light-intensity 800 mW/cm² for 60 s. To reconstruct the coronal tooth structure, core build-up was performed using a hybrid composite (Ecusit Composite, DMG, Hamburg, Germany) in teeth with one or two residual coronal walls, while a dual-cure composite resin material (LuxaCore-Dual, DMG Dental-Material GmbH, Germany) was used in teeth with three or four residual coronal walls. To standardize adhesive procedures for all core build-ups, the same dentin adhesive system was used (All Bond 2; Bisco, Schaumburg, IL, USA).

For crown preparation, a circumferential shoulder with rounded internal line angles was created with diamond burs. Care was taken to prepare a 2.0-mm-height ferrule. However, in several teeth, non-uniform ferrules had to be prepared because of a loss of tooth structure. In this cases, the achieved ferrule height was newer below 1 mm. All-ceramic crowns were fabricated using the 3G OPC System (Pentron Clinical Technologies, Wallingford, CT, USA) and adhesively cemented. Occlusion was evaluated and excursive interferences in lateral, latero-protrusive, and protrusive excursions were removed. All patients received hygiene instructions; complete plaque removal by mechanical scaling plus root planning was performed every 6 months.

2.3. Follow-up procedures

All patients were told to report to the Department of Biophysics, Medicine and Dentistry of the University of Genoa if they experienced any problems. Follow-up examinations were performed at the oral hygiene recalls. Patients were examined clinically and radiologically by two independent dentists from the Prosthetic Department of University of Genoa and were scored according to the pre-determined criteria for post-and-core survival. Radiographs of all restorations were taken with the standardized long-cone technique and examined at 4.3 × 400 with surgical head-worn loupes. Photographs, radiographs of the restorations and data sheets were used as documentation. Comparisons were made with photographs and radiographs obtained immediately after treatment. The criteria for survival were no root fracture, no post fracture, no post debonding, and no failure of the core build-up. Endodontic and periodontal failure, marginal discoloration, lack of integrity of the crown, and porcelain fracture were also noted but not included as non-survival in the statistical analysis.

2.4. Statistical analysis

Post-and-core restorations were defined as either surviving or not surviving according to the following criteria: survival was a positive, censored event, whereas non-survival was defined as the negative, uncensored event. Based on this definition, survival rates from time-related events were calculated using the non-parametric survival analysis (Kaplan-Meier). Post placement was considered as analysis baseline for the present study. Time until failure or censoring (i.e. last follow-up examination) was recorded in months. The end of the observation time for a successful restoration corresponded to the re-evaluation date. The end of observation for a failed restoration was the date when this event was noted in the record or when the failed restoration was detected during the re-evaluation appointment. Statistical analysis was performed to determine the survival rate with the software SPSS version 13.0 (SPSS) for Windows. The null hypothesis, that there is no difference between the populations in the probability of an event (here failure of post-and-core restoration) at any time point, was tested by means of the Logrank test; analysis is based on the times of events.

3. Results

A total of 538 FRPs were placed in 200 patients. The study population comprised 121 women and 79 men. A total of 538 laboratory fabricated full-ceramic single crown were placed.

In this study no follow-up information could be collected for 12 (2.3%) post-and-core restorations, involving 8 (4.2%) patients (5 men and 3 women). Reasons for not attending recall were four patients could not be contacted (seven restorations), two were no longer interested in participating
in the study (three restorations) and two had moved to another area (two restorations). Thus, 526 endodontically treated maxillary anterior teeth restored by means of post-and-core, in 192 patients (118 women, mean age 36.8 years, range 20-66 years; and 74 men, mean age 38.3 years, range 19-65 years) completed the follow-up. The restored maxillary teeth comprised 205 central incisors, 151 lateral incisors, and 170 canines, and were followed-up for a mean observation time of 5.30 years. Thirty-three post-and-core restorations were performed with parallel-sided post and dual-cure composite (group A), 216 with parallel-sided post plus hybrid light-cure composite (group B), 47 with tapered post and dual-cure composite (group C), and 230 with tapered post and hybrid light-cure composite (group D). The characteristics and distribution of the post-and-core restorations are shown in Table 1.

The results of the Kaplan-Meier analysis of cumulative survival are presented in Fig. 1. The overall 8-year survival rate of ceramic-crowned, endodontically treated maxillary anterior teeth restored with full-ceramic crowns and glass-fiber posts was 98.48%. Survival rate for groups A and C was 100%, while group B had a survival rate of 98.2% and group D of 95.72%. The Logrank test determined that there was no significant difference between the four groups, which led to acceptance of the null hypothesis.

Graphs representing the survival curves versus type of post and type of build-up material are presented for descriptive purposes in Fig. 2A and B. The survival rate for parallel-sided posts was 98.6% and that for tapered posts was 96.8%. The survival rate for core build-up materials was 100% for dual-cure composite and 96.8% for hybrid light-cure composite. The Logrank test detected no differences between these survival curves.

During the evaluation period, seven post-and-core restorations failed (1.33%). Failure mode was post debonding (five cases, 0.95%), traumatic post fracture (one case, 0.19%) and core build-up failure with fracture of the core and a small part of residual coronal dentin (one case, 0.19%). In three of the five post debonding cases, an asymptomatic periapical radiolucency was observed and endodontic re-treatment was performed. In all cases of failure, the tooth could be restored in the same manner as previously described and remained in service. No root fractures were observed.

During the evaluation period, eight full-ceramic crowns (1.52%) failed. Five (0.95%) with a fracture were replaced; the other three (0.57%) debonded crowns were immediately rebonded. The clinical performance of the full-ceramic crowns was not included in the longitudinal study.

4. Discussion

In the present study the cumulative survival rate was found to be 98.48%. Comparison across studies is always difficult due to

<table>
<thead>
<tr>
<th></th>
<th>Parallel-sided post, N (%)</th>
<th>Tapered post, N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Central Incisors</td>
<td>Lateral Incisors</td>
</tr>
<tr>
<td>Dual-core composite build-up material (n = 80)</td>
<td>17 (21.3)</td>
<td>4 (5.0)</td>
</tr>
<tr>
<td>Hybrid composite build-up material (n = 446)</td>
<td>90 (20.2)</td>
<td>20 (4.5)</td>
</tr>
</tbody>
</table>

Fig. 1 - Kaplan-Meier survival curves for post-and-core restorations in maxillary anterior teeth.

Fig. 2 - (A) Kaplan-Meier survival curves for parallel-sided and tapered posts. (B) Kaplan-Meier survival curves for dual-cure composite and hybrid light-cure composite core build-up materials.
There is, the better the survival rate. In agreement with these findings and with previous clinical trials, the occurrence of non-uniform ferrules may have influenced the results.

Finally, in three of the post debonding cases, an asymptomatic periapical radiolucency was observed and endodontic re-treatment was performed. It may be speculated that these endodontic failures were caused by re-infection due to loss of coronal seal, as has been described in other clinical trials.

The present study has some limitations. All clinical procedures were performed by experienced clinicians and the post-and-core restorations were placed over a period of 8 years, rather than simultaneously. In addition, the study population was pre-selected, since tooth loss due endodontic...
or periodontal failures was excluded; thus, the data only represent restorative failure. The study limitations include the fact that post assignment was randomized with respect to the root morphology but not with respect to tooth location. The inability of the statistical test applied to identify any significant differences may be related to the long observation period, the large number of restorations evaluated and to the relatively rare occurrence of failure. These limitations must be considered when interpreting the results.

Nevertheless, the study also possesses some major advantages compared to others: the sample size was large, and the follow-up period long; the trial was limited to anterior denition, and all patients treated were serially accounted for at the end of the study. The clinical procedure for endodontic treatment and placement of restorations was performed under standardized conditions, which are described in detail so that they can be compared with other studies.

The study groups included in this trial are still under investigation, with the aim of collecting longer-term survival data, and this continuing long-term longitudinal study will provide additional data that may support the validity of our results.

5. Conclusion

It can be concluded, within the limits of this study, that over a mean observation time of 5.30 years the survival rate of glass-fiber posts with a parallel-sided or tapered shape in combination with either hybrid composite or dual-cure composite resin core material in endodontically treated maxillary anterior teeth was 98.48%. For both parallel-sided and tapered glass-fiber posts, as for the two different core build-up materials, the long-term clinical performance was satisfactory. With regard to the influence of residual coronal dentin, survival was longer for teeth with four or three coronal walls. The amount of coronal tooth destruction was identified as a variable that influenced the survival of post-and-core systems.

Acknowledgments

The authors are especially grateful to Prof. George Romanos, Department of Dentistry, Rochester, NY, USA, for proofreading the manuscript and for his contribution to the study, and to the Department of Health Sciences, University of Genoa, Italy, for the statistical analysis.

REFERENCES

